

 Navigation

 	
 index

 	dregex stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dregex/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dregex/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	dregex stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		dregex stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		dregex stable documentation »

Dregex - Deterministic Regular Expression Engine

Dregex is a Scala/JVM library that implements a regular expression engine using deterministic finite automata (DFA). It supports some Perl-style features and yet retains linear matching time.

Most mainstream engines work with flavors of regular expressions based on the one that appeared Perl 5 in 1994. Those flavors include a wide range of features, which make state-machine based implementation impossible. As they rely on recursive backtracking, these engines can also have exponential matching time.

On the other hand, there is a mathematical definition of regular expressions, as they were invented by Stephen Kleene in 1956. In the most minimalistic version these expresions consist of just literal characters, alternation (“|”) and repetition (“*”). They can be matched again arbitrary text of length n in O(n), using a Definite Finite Automaton (DFA). Using DFA also allows to do set operations; i.e., union, intersection and difference.

There are some features of Perl regular expressions that are impossible to express in a DFA, most notable backreferences (i.e., forcing to match the same text more than once). Nevertheless, backreferences are seldom used in practice and it is possible to select a practical subset of the Perl flavor substantially bigger than their mathematical counterpart (or the POSIX’s regex) yet expresable using standard DFA.

Dregex is an attempt to implement such a subset and make a fast implementation for the Java Virtual Machine.

[image: Build Status] [https://travis-ci.org/marianobarrios/dregex]

[image: Maven Central] [https://maven-badges.herokuapp.com/maven-central/com.github.marianobarrios/dregex_2.11]
[image: Scaladoc] [http://javadoc-badge.appspot.com/com.github.marianobarrios/dregex_2.11]

Supported regex flavor

Supported features

		Literals

		Escaped characters

		Standard regular language constructs: |, ?, * and + and parenthesis grouping.

		General quantifiers: {n}, {n,m}, {n,}

		Dot wildcards

		Simple character classes: [abc]

		Simple negated character classes: [^abc]

		Ranges in character classes: [a-z]

		Special character classes: \w, \s, \d.

		Negated special character classes: \W, \S, \D.

		Special character classes inside regular character classes: [\d\s], [\D]

		Lookahead (positive and negative), provided they appear at the top level, or as part of a juxtaposition, i.e. they are no allowed inside parenthesis, nested or as members of a conjunction. Additionally the expression before a lookahead must be of fixed length.

Not (yet) supported

		Lookbehind

Not supported

		Lookaround in arbitrary positions

		Backreferences

Internals

DFA construction

The library parses the regular expressions and builds a NFA (Nondeterministic Finite Automaton) using a variation of the Thompson algorithm [http://en.wikipedia.org/w/index.php?title=Thompson%27s_construction_algorithm&oldid=649249684]. Then uses the “powerset construction” to build a DFA (Deterministic Finite Automaton). One the DFA is built, the matching algorithm is straightforward.

Wildcards and character classes

Character classes are expanded as disjunctions before NFA creation. Respectively, wildcards are expanded as a universal class.

Example transformations with alphabet: abcdefgh

		[abc] → a|b|c

		[^abc] → d|e|f|g|h

		def[^abc] → def(d|e|f|g|h)

		. → a|b|c|d|e|f|g|h

		abc. → abc(a|b|c|d|e|f|g|h)

As the alphabet can be potentially huge (such as Unicode is) something must be done to reduce the number of disjunctions:

		[abc] → a|b|c

		[^abc] → <other_char>

		def[^abc] → def(d|e|f|<other_char>)

		. → <other_char>

		abc. → abc(a|b|c|<other_char>)

Where <other_char> is a special metacharacter that matches any of the characters of the alphabet not present in the regex. Note that with this technique knowing the whole alphabet explicitly is not needed. Care must be taken when the regex is meant to be used for an operation with another regex (such as intersection or difference). In this case, <other_char> must match only the characters present in neither regex.

Example:

Regex space: [abc] and [^cd]

Characters present in any regex: abcd

		[abc] → a|b|c

		[^cd] → a|b|<other_char>

Set operations

Intersections, unions and differences between regex are done using the “product construction”. The following pages include graphical explanations of this technique:

		http://stackoverflow.com/q/7780521/4505326

		http://cs.stackexchange.com/a/7108

This is a relatively straightforward algorithm that is implemented using the already generated DFA.

Lookahead

In order to support lookaheads, “meta” regular expressions are introduced. A meta regular expression is the intersection or subtraction of 2 other (meta or simple) regular expressions. Lookaround constructions are transformed in equivalent meta simple regular expressions for processing.

		A(?=B)C → AC ∩ AB.*

		A(?!B)C → AC - AB.*

In the case of more than one lookaround, the transformation is applied recursively.

This works if A is of known length.

Only top level lookarounds that are part of a juxtaposition are permitted, i.e. they are no allowed inside parenthesis, nested or as members of a conjunction. Examples:

Allowed:

		A(?!B)C

		(?!B)C

Not allowed:

		(?!B)|B: part of a conjuction

		(?!(?!B)): lookaround inside lookaround

		(A(?!B))B: lookaround inside parenthesis

		A+(?!B)C: lookaround with variable-length prefix

Similar efforts

		RE2 [https://github.com/google/re2] is an efficient (linear) C++ library that implements a subset of Perl features, writen by Russ Cox. The author has written a set of articles [http://swtch.com/~rsc/regexp/regexp1.html] explaining the problem.

		TRE [https://github.com/laurikari/tre/] is an efficient C library and command-line tool that implements POSIX-compliant and approximate (fuzzy) regex matching. It is written by Ville Laurikari.

		Plan 9 grep [http://swtch.com/usr/local/plan9/src/cmd/grep/] is an efficient DFA implementation that supports egrep syntax. It was written by Ken Thompson.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

